前言
算法来自国外大牛的一篇博客:
算法不涉及任何人工智能领域知识,仅仅是针对上下文无关文法提出的生成句子的思路。上下文无关文法
上下文无关文法仅与句子结构有关,与上下文语意无关。
属性 | 单词 |
---|---|
S | NP VP |
NP | Det N / Det N |
NP | I / he / she / Joe |
VP | V NP / VP |
Det | a / the / my / his |
N | elephant / cat / jeans / suit |
V | kicked / followed / shot |
上面是一个上下文无关文法规则的例子,S代表一个句子,从S开始,逐渐递归填充单词,便可以生成一个句子。
基本实现
import randomfrom collections import defaultdictclass CFG(object): def __init__(self): self.prod = defaultdict(list) # 默认dict值为list,对于空键值对来说 def add_prod(self, lhs, rhs): """ Add production to the grammar. 'rhs' can be several productions separated by '|'. Each production is a sequence of symbols separated by whitespace. Usage: grammar.add_prod('NT', 'VP PP') grammar.add_prod('Digit', '1|2|3|4') """ prods = rhs.split('|') # 按照|分割 for prod in prods: self.prod[lhs].append(tuple(prod.split())) # 默认split按空格进行分割,但是这里的分割是生成一个元组,整体添加到prod里 def gen_random(self, symbol): """ Generate a random sentence from the grammar, starting with the given symbol. """ sentence = '' # select one production of this symbol randomly rand_prod = random.choice(self.prod[symbol]) # 从符号列表中随机选择一个词组 for sym in rand_prod: #遍历词组中的单词 # for non-terminals, recurse if sym in self.prod: #如果这个位置的单词并不是一个确切的单词,而是一个词法结构,那么递归选择相应的符合条件的单词 sentence += self.gen_random(sym) else: sentence += sym + ' ' #如果已经是一个确切的单词,那么直接连接到句子上即可 return sentencecfg1 = CFG()cfg1.add_prod('S', 'NP VP')cfg1.add_prod('NP', 'Det N | Det N')cfg1.add_prod('NP', 'I | he | she | Joe')cfg1.add_prod('VP', 'V NP | VP')cfg1.add_prod('Det', 'a | the | my | his')cfg1.add_prod('N', 'elephant | cat | jeans | suit')cfg1.add_prod('V', 'kicked | followed | shot')for i in range(10): print(cfg1.gen_random('S'))
这里给出了一个基于Python的基本实现,通过递归填充单词即可。
上下文无关文法导致无法终止的问题
上面的算法很简单,可以看起来很棒。但实际上存在一个问题,容易导致无法终止的问题。
属性 | 表达式 |
---|---|
EXPR | TERM + EXPR |
EXPR | TERM - EXPR |
EXPR | TERM |
TERM | FACTOR * TERM |
TERM | FACTOR / TERM |
TERM | FACTOR |
FACTOR | ID // NUM // ( EXPR ) |
ID | x // y // z // w |
NUM | 0//1//2//3//4//5//6//7//8//9 |
例如上面一个生成算数表达式的例子,上面的规则都符合正常的数学知识,但是在生成表达式的过程中产生了不能终结的问题。EXPR->TERM + EXPR->TERM + EXPR,类似这样的无限循环。
解决无法终止问题
破解无法终止的问题,可以采用概率生成算法。
这里引用了作者原文中的图,由于TERM-EXPR的祖先已经使用过这个表达式,那么此时这个表达式的生成概率会相应地降低,例如图中的降低因子是0.5,也就是说使用过一次,那么下一次使用这个表达式的概率只有原来的50%。上述算法使用代码实现如下import randomfrom collections import defaultdict# 概率选择算法def weighted_choice(weights): rnd = random.random() * sum(weights) for i, w in enumerate(weights): rnd -= w if rnd < 0: return iclass CFG(object): def __init__(self): self.prod = defaultdict(list) # 默认dict值为list,对于空键值对来说 def add_prod(self, lhs, rhs): """ Add production to the grammar. 'rhs' can be several productions separated by '|'. Each production is a sequence of symbols separated by whitespace. Usage: grammar.add_prod('NT', 'VP PP') grammar.add_prod('Digit', '1|2|3|4') """ prods = rhs.split('|') # 按照|分割 for prod in prods: self.prod[lhs].append(tuple(prod.split())) # 默认split按空格进行分割,但是这里的分割是生成一个元组,整体添加到prod里 def gen_random_convergent(self, symbol, cfactor=0.25, pcount=defaultdict(int) ): """ Generate a random sentence from the grammar, starting with the given symbol. Uses a convergent algorithm - productions that have already appeared in the derivation on each branch have a smaller chance to be selected. cfactor - controls how tight the convergence is. 0 < cfactor < 1.0 pcount is used internally by the recursive calls to pass on the productions that have been used in the branch. """ sentence = '' # The possible productions of this symbol are weighted # by their appearance in the branch that has led to this # symbol in the derivation # weights = [] for prod in self.prod[symbol]: # 对于满足某个要求的所有表达式,计算相应的生成概率 if prod in pcount: weights.append(cfactor ** (pcount[prod])) # 对于父节点已经引用过的表达式,此处需要根据因子减小生成概率 else: weights.append(1.0) # rand_prod = self.prod[symbol][weighted_choice(weights)] # 根据概率选择新生成的表达式 # pcount is a single object (created in the first call to # this method) that's being passed around into recursive # calls to count how many times productions have been # used. # Before recursive calls the count is updated, and after # the sentence for this call is ready, it is rolled-back # to avoid modifying the parent's pcount. # pcount[rand_prod] += 1 for sym in rand_prod: # for non-terminals, recurse if sym in self.prod: # 如果不是一个确切的单词,那么递归填充表达式 sentence += self.gen_random_convergent( sym, cfactor=cfactor, pcount=pcount) else: sentence += sym + ' ' # 如果是一个确切的单词,那么直接添加到句子后面即可 # backtracking: clear the modification to pcount pcount[rand_prod] -= 1 # 由于pcount是引用传值,因此需要恢复原来状态 return sentencecfg1 = CFG()cfg1.add_prod('S', 'NP VP')cfg1.add_prod('NP', 'Det N | Det N')cfg1.add_prod('NP', 'I | he | she | Joe')cfg1.add_prod('VP', 'V NP | VP')cfg1.add_prod('Det', 'a | the | my | his')cfg1.add_prod('N', 'elephant | cat | jeans | suit')cfg1.add_prod('V', 'kicked | followed | shot')for i in range(10): print(cfg1.gen_random_convergent('S'))cfg2 = CFG()cfg2.add_prod('EXPR', 'TERM + EXPR')cfg2.add_prod('EXPR', 'TERM - EXPR')cfg2.add_prod('EXPR', 'TERM')cfg2.add_prod('TERM', 'FACTOR * TERM')cfg2.add_prod('TERM', 'FACTOR / TERM')cfg2.add_prod('TERM', 'FACTOR')cfg2.add_prod('FACTOR', 'ID | NUM | ( EXPR )')cfg2.add_prod('ID', 'x | y | z | w')cfg2.add_prod('NUM', '0|1|2|3|4|5|6|7|8|9')for i in range(10): print(cfg2.gen_random_convergent('EXPR'))
小结
通过递归,可以很容易地实现基于上下文无关文法生成句子的算法。但是需要注意的是,普通算法会导致无法终止的问题,针对这个问题,有人提出了基于概率的句子生成算法,很好地解决了无法终止的问题。